import algorithm import ./chess.nim type MoveTree = object ## `Movetree` is a visualization for possible moves. chess: Chess evaluation: float children: seq[Movetree] const PawnVal = 10 ## `PawnVal` is the engines value for a pawn. KnightVal = 31 ## `KnightVal` is the engines value for a knight. BishopVal = 33 ## `BishopVal` is the engines value for a bishop. RookVal = 50 ## `RookVal` is the engines value for a rook. QueenVal = 90 ## `QueenVal` is the engines value for a queen. CheckmateVal = -10000 ## `CheckmateVal` is the engines value for a checkmate. DrawVal = 0 ## `DrawVal` is the engines value for a draw. LoVal = -1000000 ## `LoVal` is a value always lower than any evaluation. pawnTable = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 10, 10, -20, -20, 10, 10, 5, 0, 0, 5, -5, -10, 0, 0, -10, -5, 5, 0, 0, 0, 0, 0, 20, 20, 0, 0, 0, 0, 0, 5, 5, 10, 25, 25, 10, 5, 5, 0, 0, 10, 10, 20, 30, 30, 20, 10, 10, 0, 0, 50, 50, 50, 50, 50, 50, 50, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ## `pawnTable` is the piece-square table for pawns. knightTable = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -50, -40, -30, -30, -30, -30, -40, -50, 0, 0, -40, -20, 0, 5, 5, 0, -20, -40, 0, 0, -30, 0, 10, 15, 15, 10, 0, -30, 0, 0, -30, 5, 15, 20, 20, 15, 5, -30, 0, 0, -30, 0, 15, 20, 20, 15, 0, -30, 0, 0, -30, 5, 10, 15, 15, 10, 5, -30, 0, 0, -40, -20, 0, 0, 0, 0, -20, -40, 0, 0, -50, -40, -30, -30, -30, -30, -40, -50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ## `knightTable` is the piece-square table for pawns. bishopTable = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20, -10, -10, -10, -10, -10, -10, -20, 0, 0, -10, 5, 0, 0, 0, 0, 5, -10, 0, 0, -10, 10, 10, 10, 10, 10, 10, -10, 0, 0, -10, 0, 10, 10, 10, 10, 0, -10, 0, 0, -10, 5, 5, 10, 10, 5, 5, -10, 0, 0, -10, 0, 5, 10, 10, 5, 0, -10, 0, 0, -10, 0, 0, 0, 0, 0, 0, -10, 0, 0, -20, -10, -10, -10, -10, -10, -10, -20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ## `bishopTable` is the piece-square table for pawns. rookTable = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, -5, 0, 0, -5, 0, 0, 0, 0, 0, 0, -5, 0, 0, -5, 0, 0, 0, 0, 0, 0, -5, 0, 0, -5, 0, 0, 0, 0, 0, 0, -5, 0, 0, -5, 0, 0, 0, 0, 0, 0, -5, 0, 0, 5, 10, 10, 10, 10, 10, 10, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ## `rookTable` is the piece-square table for pawns. queenTable = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20, -10, -10, -5, -5, -10, -10, -20, 0, 0, -10, 0, 0, 0, 0, 5, 0, -10, 0, 0, -10, 0, 5, 5, 5, 5, 0, -10, 0, 0, -10, 0, 5, 5, 5, 5, 0, -10, 0, 0, -10, 0, 5, 5, 5, 5, 0, -10, 0, 0, -10, 0, 5, 5, 5, 5, 0, -10, 0, 0, -10, 0, 0, 0, 0, 0, 0, -10, 0, 0, -20, -10, -10, -5, -5, -10, -10, -20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ## `queenTable` is the piece-square table for pawns. kingTable = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 30, 10, 0, 0, 10, 30, 20, 0, 0, 20, 20, 0, 0, 0, 0, 20, 20, 0, 0, -10, -20, -20, -20, -20, -20, -20, -10, 0, 0, -20, -30, -30, -40, -40, -30, -30, -20, 0, 0, -30, -40, -40, -50, -50, -40, -40, -30, 0, 0, -30, -40, -40, -50, -50, -40, -40, -30, 0, 0, -30, -40, -40, -50, -50, -40, -40, -30, 0, 0, -30, -40, -40, -50, -50, -40, -40, -30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ## `kingTable` is the piece-square table for pawns. proc pieceEval(chess: Chess): int = ## Returns the evaluation of existing pieces on the `board` var evaluation = DrawVal for ind, square in chess.board: case square: of WPawn: evaluation += ord(Color.White) * PawnVal evaluation += ord(Color.White) * pawnTable[ind] of WKnight: evaluation += ord(Color.White) * KnightVal evaluation += ord(Color.White) * knightTable[ind] of WBishop: evaluation += ord(Color.White) * BishopVal evaluation += ord(Color.White) * bishopTable[ind] of WRook: evaluation += ord(Color.White) * RookVal evaluation += ord(Color.White) * rookTable[ind] of WQueen: evaluation += ord(Color.White) * QueenVal evaluation += ord(Color.White) * queenTable[ind] of WKing: evaluation += ord(Color.White) * kingTable[ind] of BPawn: evaluation += ord(Color.Black) * PawnVal evaluation += ord(Color.Black) * pawnTable.reversed[ind] of BKnight: evaluation += ord(Color.Black) * KnightVal evaluation += ord(Color.Black) * knightTable.reversed[ind] of BBishop: evaluation += ord(Color.Black) * BishopVal evaluation += ord(Color.Black) * bishopTable.reversed[ind] of BRook: evaluation += ord(Color.Black) * RookVal evaluation += ord(Color.Black) * rookTable.reversed[ind] of BQueen: evaluation += ord(Color.Black) * QueenVal evaluation += ord(Color.Black) * queenTable.reversed[ind] of BKing: evaluation += ord(Color.White) * kingTable.reversed[ind] else: continue return evaluation proc evaluate(chess: Chess): int = ## Returns a complete evaluation of a `chess` with player `toMove` about to make ## a move. var evaluation: int if chess.isCheckmate(chess.toMove): evaluation = ord(chess.toMove) * CheckmateVal if chess.isStalemate(chess.toMove): evaluation = DrawVal else: evaluation = chess.pieceEval() if chess.isDrawClaimable(): if chess.toMove == Color.White: evaluation = max(DrawVal, evaluation) else: evaluation = min(DrawVal, evaluation) return evaluation proc spanMoveTree(chess: Chess, depth: int): MoveTree = ## Create and return a Movetree of a given `chess` with a given maximum `depth`. var mTree: MoveTree mTree.chess = chess if depth != 0 and not chess.isCheckmate(chess.toMove) and not chess.isStalemate(chess.toMove): let possibleMoves = chess.genLegalMoves(chess.toMove) for move in possibleMoves: var tmpChess = chess tmpChess.checkedMove(move) mTree.children.add(spanMoveTree(tmpChess, depth-1)) return mTree proc negaMax(mTree: MoveTree): int = ## Return the value of the root node of a given `MoveTree` if mTree.children == []: return mTree.chess.evaluate() var bestVal = LoVal for child in mTree.children: var tmpVal = -negaMax(child) bestVal = max(bestVal, tmpVal) return bestVal proc bestMove*(chess: Chess, depth: int): Move = ## Generate a MoveTree of a `chess` with a given `depth`, run negaMax and return ## the best evaluated move. var moves = chess.genLegalMoves(chess.toMove) var bestMove: Move var bestEval: int bestEval = LoVal for move in moves: var tmpChess = chess tmpChess.checkedMove(move) var tmpMTree = tmpChess.spanMoveTree(depth) var tmpEval = -tmpMTree.negaMax() echo("move:", moveToNotation(move), "; eval:", tmpEval) if tmpEval > bestEval: bestEval = tmpEval bestMove = move return bestMove